Лабораторные работы по электротехнике

Затухающие синусоидальные колебания в R-L-C контуре

В замкнутом контуре (рис. 10.3.1) после отключении его от источника постоянного или переменного напряжения могут возникнуть затухающие синусоидальные колебания, обусловленные начальным запасом энергии в электрическом поле конденсатора и в магнитном поле катушки индуктивности.

В общем случае состояние цепи определяется из дифференциального уравнения, составленного по второму закону Кирхгофа:

Поскольку то

или

Рис. 10.3.1.

Вид решения этого дифференциального уравнения зависит от характера корней характеристического уравнения:

Корни этого уравнения:

Когда , корни вещественные отрицательные и процесс изменения тока и напряжений имеет апериодический затухающий характер (рис.10.3.2а). Если же R<Rкр, то возникает колебательный процесс (рис. 10.3.2б). Тогда решение дифференциального уравнения имеет вид:

sint,

где , .

Рис. 10.3.2.

При уменьшении сопротивления от некоторого значения большего, чем Rкр сначала увеличивается скорость затухающего апериодического процесса, затем, при R=Rкр качественно изменяется характер процесса – он становится колебательным - и при дальнейшем уменьшении сопротивления увеличивается частота колебаний и уменьшается затухание. При R, стремящемся к нулю, частота стремится к резонансной частоте , а затухание – к нулю.

В данной работе заряд конденсатора до напряжения u0 осуществляется однополярными прямоугольными импульсами напряжения и исследуется процесс его разряда на сопротивление и индуктивность во время пауз между импульсами. Повторяющийся процесс заряда и разряда конденсатора можно наблюдать на электронном или виртуальном осциллографе.

Экспериментальная часть

Задание

Исследовать влияние активного сопротивления на характер процесса разряда конденсатора на сопротивление и индуктивность. Сравнить экспериментальные частоту и затухание колебаний с расчётными значениями.

Порядок выполнения работы

Измерьте омметром и запишите активное сопротивление катушки индуктивности, указанной на схеме (рис.10.3.3):

.

Rк= Ом.

Вычислите резонансную частоту и критическое сопротивление колебательного контура:

Гц;

Ом;

Соберите цепь согласно схеме (рис.10.3.3), включив в неё в качестве измерительных приборов соответствующие гнёзда коннектора, выведите подстроечный резистор Rдоб на ноль и установите на источнике напряжения однополярные прямоугольные импульсы частотой 200 Гц и максимальной амплитуды.

Рис. 6.10.3.

Включите виртуальные приборы и настройте виртуальный осциллограф для наблюдения кривых uC(t) и i(t) (наиболее удобная я развёртка 200 - 500мкС/дел.).

Определите по осциллографу период затухающих колебаний и вычислите частоту:

T= мС, f= Гц.

Убедитесь, что полученное значение частоты близко к резонансной частоте.

Плавно увеличивая добавочное сопротивление Rдоб, убедитесь, что частота колебаний слегка уменьшается, а затухание увеличивается и при большом сопротивлении процесс становится апериодическим.

Установите регулятор потенциометра в положение, при котором процесс меняет характер, отключите питание и измерьте омметром добавочное сопротивление:

Rдоб= Ом.

Вычислите суммарное активное сопротивление колебательного контура:

Rдоб+Rк= Ом

Убедитесь, что эта сумма близка к Rкр.

Начертательная геометрия, физика полупроводников