Оптоэлектроника Электроника полупроводников Волоконно-оптический световод Мультиплексоры и демультиплексоры Фотопроводимость Фотодиоды

Лабораторные работы по оптоэлектронике Передача информации по оптоволокну

ОСНОВНЫЕ СВЕДЕНИЯ О ФИЗИЧЕСКИХ ЯВЛЕНИЯХ И ПРОЦЕССАХ В ПОЛУПРОВОДНИКОВЫХ СТРУКТУРАХ

Основные понятия и уравнения твердотельной электроники

Температурный потенциал

jТ=kT/q,  (1.1)

где k – постоянная Больцмана; T – абсолютная температура (при температуре T=300К температурный потенциал имеет значение jT=0,026В, или 26мВ), q – модуль заряда электрона.

Закон действующих масс

, (1.2)

где n – концентрация электронов; p – концентрация дырок; ni – концентрация носителей заряда в собственном полупроводнике. Закон справедлив в случае термодинамического равновесия как для собственных, так и для примесных полупроводников.

Условие электронейтральности

 (1.3)

где NA, ND – концентрация ионизированных атомов акцепторной и донорной примесей соответственно.

Потенциал, характеризующий положение уровня Ферми в полупроводнике рассчитывается

jfp = j i - jобp (1.4 а)

или

jfn = j i + jобn, (1.4 б)

где ji – потенциал, соответствующий середине запрещенной зоны полупроводника:

jобp = jТ ln (p/ni), (1.5 а)

jобn = jТ ln(n/ni) (1.5 б)

 – объемные потенциалы.

Таким образом, согласно данным выражениям, в собственных полупроводниках (n = p = ni) уровень Ферми расположен в середине запрещенной зоны, в электронных полупроводниках (n > ni) – в верхней половине, а в дырочных (р > ni) – в нижней половине запрещенной зоны.

Уровень Ферми одинаков во всех частях равновесной системы, какой бы разнородной она ни была, т. е. jf = const.

Закон полного тока в полупроводнике n-типа

, (1.6 а)

в полупроводнике р-типа

, (1.6 б)

где  и  – градиенты концентраций дырок и электронов; mp, mn – подвижности дырок и электронов соответственно; Dp и Dn – коэффициенты диффузии дырок и электронов; Е – напряженность внешнего электрического поля.

Соотношение Эйнштейна, показывающее связь между коэффициентом диффузии и подвижностью носителей заряда,

, (1.7 а)

 (1.7 б)

в полупроводнике n- и p-типа соответственно.

Уравнение непрерывности для стационарных условий (), выражающее закон сохранения частиц,

, (1.8 а)

 (1.8 б)

для полупроводников n - и p-типа, соответственно. Здесь n – n0 = Dn и р – р0 = Dр – избыточные (неравновесные) концентрации носителей заряда; g – скорость генерации носителей заряда под действием внешних факторов, например света; tn и tр – время жизни неравновесных носителей заряда.

Время жизни неравновесных носителей заряда tn и tр равно промежутку времени, в течение которого их концентрация уменьшается в е раз.

Диффузионная длина носителя заряда соответствует расстоянию, которое он проходит за время жизни и равна

 (1.9 а)

и

, (1.9 б)

где Ln и Lp – диффузионная длина электронов и дырок, соответственно.

Уравнение Пуассона, позволяющее определить распределение потенциала в полупроводнике,

, (1.10)

где j – потенциал; x – координата; r(x) – объемная плотность заряда; es – относительная диэлектрическая проницаемость полупроводника, e0 – электрическая постоянная.

Особенности полевых МОП транзисторов

Очень большое Rвх, он управляется не током, как биполярный, а напряжением, прикладываемым к цепи затвор–исток. Поэтому для управления им требуется очень маленькая мощность

Высокое быстродействие в ключевых режимах по сравнению с быстродействием биполярных транзисторов, т.к. нет процессов накопления и рассасывания неосновных носителей, как это наблюдается у биполярных транзисторов. В биполярных транзисторах помимо основных носителей тока, существуют также и неосновные, которые транзистор набирает благодаря току базы. С наличием неосновных носителей связано такое понятие как, время рассасывания, которое обуславливает задержку выключения транзистора.

Положительный ТКС, что упрощает включение их на параллельную работу для получения большой нагрузочной способности по току. Между параллельно включенными транзисторами обеспечивается равномерное токораспределение из-за эффекта самовыравнивания токов: если ток через какой-либо транзистор будет больше, чем через другие параллельно включенные транзисторы, то возрастет его нагрев, увеличится сопротивление канала, возрастет напряжение проводимости, в результате возрастет ток через параллельно включенный транзистор. Здесь работает правило электротехники: в цепи с параллельным соединением элементов токи распределяются обратно пропорционально сопротивлениям элементов.

Отсутствие у полевого транзистора явления вторичного пробоя, поэтому его область безопасной работы в координатах ток-напряжение гораздо больше, чем у биполярного транзистора.

Высоковольтные полевые транзисторы по сравнению с биполярными имеют повышенное падение напряжения в режиме насыщения, поэтому они имеют большие потери мощности. Падение напряжения сильно растет с повышением температуры (у биполярных и IGBT – уменьшается) и с ростом рабочего напряжения. Последнее обусловлено тем, что с ростом напряжения растет сопротивление канала (примерно по квадратичному закону).


Полупроводниковые детекторы оптического излучения